45 research outputs found

    Chiral corrections to the SU(2)×SU(2)SU(2)\times SU(2) Gell-Mann-Oakes-Renner relation

    Get PDF
    The next to leading order chiral corrections to the SU(2)×SU(2)SU(2)\times SU(2) Gell-Mann-Oakes-Renner (GMOR) relation are obtained using the pseudoscalar correlator to five-loop order in perturbative QCD, together with new finite energy sum rules (FESR) incorporating polynomial, Legendre type, integration kernels. The purpose of these kernels is to suppress hadronic contributions in the region where they are least known. This reduces considerably the systematic uncertainties arising from the lack of direct experimental information on the hadronic resonance spectral function. Three different methods are used to compute the FESR contour integral in the complex energy (squared) s-plane, i.e. Fixed Order Perturbation Theory, Contour Improved Perturbation Theory, and a fixed renormalization scale scheme. We obtain for the corrections to the GMOR relation, δπ\delta_\pi, the value δπ=(6.2,±1.6)\delta_\pi = (6.2, \pm 1.6)%. This result is substantially more accurate than previous determinations based on QCD sum rules; it is also more reliable as it is basically free of systematic uncertainties. It implies a light quark condensate 2GeV=(267±5MeV)3 \simeq \equiv |_{2\,\mathrm{GeV}} = (- 267 \pm 5 MeV)^3. As a byproduct, the chiral perturbation theory (unphysical) low energy constant H2rH^r_2 is predicted to be H2r(νχ=Mρ)=(5.1±1.8)×103H^r_2 (\nu_\chi = M_\rho) = - (5.1 \pm 1.8)\times 10^{-3}, or H2r(νχ=Mη)=(5.7±2.0)×103H^r_2 (\nu_\chi = M_\eta) = - (5.7 \pm 2.0)\times 10^{-3}.Comment: A comment about the value of the strong coupling has been added at the end of Section 4. No change in results or conslusion

    Corrections to the SU(3)×SU(3){\bf SU(3)\times SU(3)} Gell-Mann-Oakes-Renner relation and chiral couplings L8rL^r_8 and H2rH^r_2

    Get PDF
    Next to leading order corrections to the SU(3)×SU(3)SU(3) \times SU(3) Gell-Mann-Oakes-Renner relation (GMOR) are obtained using weighted QCD Finite Energy Sum Rules (FESR) involving the pseudoscalar current correlator. Two types of integration kernels in the FESR are used to suppress the contribution of the kaon radial excitations to the hadronic spectral function, one with local and the other with global constraints. The result for the pseudoscalar current correlator at zero momentum is ψ5(0)=(2.8±0.3)×103GeV4\psi_5(0) = (2.8 \pm 0.3) \times 10^{-3} GeV^{4}, leading to the chiral corrections to GMOR: δK=(55±5)\delta_K = (55 \pm 5)%. The resulting uncertainties are mostly due to variations in the upper limit of integration in the FESR, within the stability regions, and to a much lesser extent due to the uncertainties in the strong coupling and the strange quark mass. Higher order quark mass corrections, vacuum condensates, and the hadronic resonance sector play a negligible role in this determination. These results confirm an independent determination from chiral perturbation theory giving also very large corrections, i.e. roughly an order of magnitude larger than the corresponding corrections in chiral SU(2)×SU(2)SU(2) \times SU(2). Combining these results with our previous determination of the corrections to GMOR in chiral SU(2)×SU(2)SU(2) \times SU(2), δπ\delta_\pi, we are able to determine two low energy constants of chiral perturbation theory, i.e. L8r=(1.0±0.3)×103L^r_8 = (1.0 \pm 0.3) \times 10^{-3}, and H2r=(4.7±0.6)×103H^r_2 = - (4.7 \pm 0.6) \times 10^{-3}, both at the scale of the ρ\rho-meson mass.Comment: Revised version with minor correction

    Wnt pathway reprogramming during human embryonal carcinoma differentiation and potential for therapeutic targeting

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Testicular germ cell tumors (TGCTs) are classified as seminonas or non-seminomas of which a major subset is embryonal carcinoma (EC) that can differentiate into diverse tissues. The pluripotent nature of human ECs resembles that of embryonic stem (ES) cells. Many Wnt signalling species are regulated during differentiation of TGCT-derived EC cells. This study comprehensively investigated expression profiles of Wnt signalling components regulated during induced differentiation of EC cells and explored the role of key components in maintaining pluripotency.</p> <p>Methods</p> <p>Human embryonal carcinoma cells were stably infected with a lentiviral construct carrying a canonical Wnt responsive reporter to assess Wnt signalling activity following induced differentiation. Cells were differentiated with all-<it>trans </it>retinoic acid (RA) or by targeted repression of pluripotency factor, POU5F1. A Wnt pathway real-time-PCR array was used to evaluate changes in gene expression as cells differentiated. Highlighted Wnt pathway genes were then specifically repressed using siRNA or stable shRNA and transfected EC cells were assessed for proliferation, differentiation status and levels of core pluripotency genes.</p> <p>Results</p> <p>Canonical Wnt signalling activity was low basally in undifferentiated EC cells, but substantially increased with induced differentiation. Wnt pathway gene expression levels were compared during induced differentiation and many components were altered including ligands (WNT2B), receptors (FZD5, FZD6, FZD10), secreted inhibitors (SFRP4, SFRP1), and other effectors of Wnt signalling (FRAT2, DAAM1, PITX2, Porcupine). Independent repression of FZD5, FZD7 and WNT5A using transient as well as stable methods of RNA interference (RNAi) inhibited cell growth of pluripotent NT2/D1 human EC cells, but did not appreciably induce differentiation or repress key pluripotency genes. Silencing of FZD7 gave the greatest growth suppression in all human EC cell lines tested including NT2/D1, NT2/D1-R1, Tera-1 and 833K cells.</p> <p>Conclusion</p> <p>During induced differentiation of human EC cells, the Wnt signalling pathway is reprogrammed and canonical Wnt signalling induced. Specific species regulating non-canonical Wnt signalling conferred growth inhibition when targeted for repression in these EC cells. Notably, FZD7 repression significantly inhibited growth of human EC cells and is a promising therapeutic target for TGCTs.</p

    Averages of b-hadron, c-hadron, and tau-lepton properties as of 2018 Heavy Flavor Averaging Group (HFLAV)

    Get PDF
    This paper reports world averages of measurements of b-hadron, c-hadron, and τ -lepton properties obtained by the Heavy Flavour Averaging Group using results available through September 2018. In rare cases, significant results obtained several months later are also used. For the averaging, common input parameters used in the various analyses are adjusted (rescaled) to common values, and known correlations are taken into account. The averages include branching fractions, lifetimes, neutral meson mixing parameters, C P violation parameters, parameters of semileptonic decays, and Cabibbo–Kobayashi–Maskawa matrix elements

    Review of lattice results concerning low-energy particle physics

    Get PDF
    corecore